A global pattern of mechanical stress polarizes cell divisions and cell shape in the growing Drosophila wing disc.

نویسندگان

  • Loïc Legoff
  • Hervé Rouault
  • Thomas Lecuit
چکیده

Organismal development is under genetic control. Ultimately, mechanical forces shape embryos. If we want to understand the precise regulation of size and shape in animals, we must dissect how forces are distributed in developing tissues, and how they drive cell behavior to shape organs. This has not been addressed fully in the context of growing tissues. As cells grow and divide, they exert a pressure on their neighbors. How these local stresses add up or dissipate as the tissue grows is an unanswered question. We address this issue in the growing wing imaginal disc of Drosophila larvae, the precursor of the adult wing. We used a quantitative approach to analyze the strains and stresses of cells of the wing pouch, and found a global pattern of stress whereby cells in the periphery of the tissue are mechanically stretched and cells in the center are compressed. This pattern has important consequences on cell shape in the wing pouch: cells respond to it by polarizing their acto-myosin cortex, and aligning their divisions with the main axis of cell stretch, thereby polarizing tissue growth. Ectopic perturbations of tissue growth by the Hippo signaling pathway reorganize this pattern in a non-autonomous manner, suggesting a synergy between tissue mechanics and growth control during wing disc morphogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential proliferation rates generate patterns of mechanical tension that orient tissue growth.

Orientation of cell divisions is a key mechanism of tissue morphogenesis. In the growing Drosophila wing imaginal disc epithelium, most of the cell divisions in the central wing pouch are oriented along the proximal-distal (P-D) axis by the Dachsous-Fat-Dachs planar polarity pathway. However, cells at the periphery of the wing pouch instead tend to orient their divisions perpendicular to the P-...

متن کامل

Rab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila

In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...

متن کامل

Mechanisms of Regulating Tissue Elongation in Drosophila Wing: Impact of Oriented Cell Divisions, Oriented Mechanical Forces, and Reduced Cell Size

Regulation of cell growth and cell division plays fundamental roles in tissue morphogenesis. However, the mechanisms of regulating tissue elongation through cell growth and cell division are still not well understood. The wing imaginal disc of Drosophila provides a model system that has been widely used to study tissue morphogenesis. Here we use a recently developed two-dimensional cellular mod...

متن کامل

Dynamics and Mechanical Stability of the Developing Dorsoventral Organizer of the Wing Imaginal Disc

Shaping the primordia during development relies on forces and mechanisms able to control cell segregation. In the imaginal discs of Drosophila the cellular populations that will give rise to the dorsal and ventral parts on the wing blade are segregated and do not intermingle. A cellular population that becomes specified by the boundary of the dorsal and ventral cellular domains, the so-called o...

متن کامل

Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing

How tissue shape emerges from the collective mechanical properties and behavior of individual cells is not understood. We combine experiment and theory to study this problem in the developing wing epithelium of Drosophila. At pupal stages, the wing-hinge contraction contributes to anisotropic tissue flows that reshape the wing blade. Here, we quantitatively account for this wing-blade shape cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 140 19  شماره 

صفحات  -

تاریخ انتشار 2013